卓哥范文网 - 设为首页 - 加入收藏
当前位置 首页 > 专题范文 > 工作要点 >

2023八年级数学复习要点知识点总结4篇(全文完整)

时间:2023-10-12 20:00:05 来源:网友投稿

八年级数学复习要点知识点总结第十六章二次根式主要知识点:1、二次根式的概念2、二次根式的性质3、简二次根式与同类二次根式4、二次根式的运算中考分值:填空一题下面是小编为大家整理的八年级数学复习要点知识点总结4篇,供大家参考。

八年级数学复习要点知识点总结4篇

八年级数学复习要点知识点总结篇1

第十六章 二次根式

主要知识点:

1、二次根式的概念

2、二次根式的性质

3、简二次根式与同类二次根式

4、二次根式的运算

中考分值:

填空一题、选择一题共4~8分。

大题目中的计算基本都会运用到二次根式的计算。

重难点:

初中第一次将有理数的计算拓展到无理数的计算。

二次根式的运算是基础运算,为后面各种方程的计算做基础。

二次根式的计算比较容易出错。

第十七章一元二次方程

主要知识点:

1、一元二次方程的概念

2、一元二次方程的解法

3、一元二次方程根的判别式

4、一元二次方程的应用

中考分值:

所有需要运算的题目基本都需要运用到解一元二次方程,分值不低于30分。

重难点:

一元二次方程解法多样,需要注意方法的选择。

铺垫型知识点,为后面学习分式方程、无理方程等做铺垫。

如果不会解一元二次方程中考基本寸步难行。

第十八章正比例函数和反比例函数

主要知识点:

1、函数的概念

2、正比例函数

3、反比例函数

4、函数表示法

中考分值:

填空选择一题4分

重难点:

初中第一次接触函数,概念和意义比较难理解。

这一章是所有函数的基础,为后面学习一次函数、二次函数做铺垫。

第十九章几何证明

主要知识点:

1、公理、定理及命题,逆命题及逆定理

2、线段的垂直平分线

3、角平分线

4、直角三角形的性质

5、勾股定理

中考分值:

21题几何证明10分,填空选择8~12分。

18、25题难题基本都会运用到本章所学知识点。

重难点:

相较于初一的几何,这一章的难度大大增加,是本学期最重要的章节。

这一章所学的知识点都是几何比较轴心的知识点,以后学习几何会经常使用。

八年级数学复习要点知识点总结篇2

第十一章 全等三角形

一、知识框架

二、知识概念

1。全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2。全等三角形的性质:全等三角形的对应角相等、对应边相等。

3。三角形全等的判定公理及推论有:

(1)“边角边”简称“SAS”

(2)“角边角”简称“ASA”

(3)“边边边”简称“SSS”

(4)“角角边”简称“AAS”

(5)斜边和直角边相等的两直角三角形(HL)。

4。角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5。证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系)。②、回顾三角形判定,搞清我们还需要什么。③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。

在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。通过直观的理解和比较发现全等三角形的奥妙之处。在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。

第十二章 轴对称

一、知识框架

二、知识概念

1。对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2。性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3。等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

4。等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

5。等腰三角形的判定:等角对等边。

6。等边三角形角的特点:三个内角相等,等于60°,

7。等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60°的等腰三角形是等边三角形。

有两个角是60°的三角形是等边三角形。

8。直角三角形中,30°角所对的直角边等于斜边的一半。

9。直角三角形斜边上的中线等于斜边的一半。

本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。

第十三章 实数

一、知识框架

二、知识概念

1。算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。

2。平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。

3。正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。

4。正数的立方根是正数;0的立方根是0;负数的立方根是负数。

5。数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。重点是实数的意义和实数的分类;实数的运算法则及运算律。

第十四章 一次函数

一、知识框架

二、知识概念

1。一次函数:若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

2。正比例函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。

3。正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

4。已知两点坐标求函数解析式:待定系数法

一次函数是初中学生学习函数的开始,也是今后学习其它函数知识的基石。在学习本章内容时,教师应该多从实际问题出发,引出变量,从具体到抽象的认识事物。培养学生良好的变化与对应意识,体会数形结合的思想。在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的实用价值和乐趣。

第十五章整式的乘除与分解因式

一、知识概念

1。同底数幂的乘法法则:(m,n都是正数)

2。。幂的乘方法则:(m,n都是正数)

3。整式的乘法

(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

(3)。多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

4。平方差公式:

5。完全平方公式:

6。同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n)。

在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0。

②任何不等于0的数的0次幂等于1,即,如,(-2。50=1),则00无意义。

③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;当a<0时,a-p的值可能是正也可能是负的,如,

④运算要注意运算顺序。

7。整式的除法

单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加。

8。分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

分解因式的一般方法:1。提公共因式法2。运用公式法3。十字相乘法

分解因式的步骤:

(1)先看各项有没有公因式,若有,则先提取公因式;

(2)再看能否使用公式法;

(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止。

整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。在学习本章内容时,应多准备些小组合作与交流活动,培养学生推理能力、计算能力。在做题中体验数学法则、公式的简洁美、和谐美,提高做题效率。

八年级数学复习要点知识点总结篇3

知识点总结

定义与命题:

1.对名称与术语的含义加以描述,作出明确的规定,也就是给出他们的定义。

2.对事情进行判断的句子叫做命题(分真命题与假命题)。

3.每个命题是由条件和结论两部分组成。

4.要说明一个命题是假命题,通常举出一个例子,使之具备命题的条件,而不具有命题的结论,这种例子叫做反例。

5.把原命题的结论作为命题的条件,原命题的条件作为命题的结论,所组成的命题叫原命题的逆命题。

八年级数学复习要点知识点总结篇4

全等三角形

一、定义

1、全等形:形状大小相同,能完全重合的两个图形、

2、全等三角形:能够完全重合的两个三角形、

二、重点

1、平移,翻折,旋转前后的图形全等、

2、全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等、

3、全等三角形的判定:

SSS三边对应相等的两个三角形全等[边边边]

SAS两边和它们的夹角对应相等的两个三角形全等[边角边]

ASA两角和它们的夹边对应相等的两个三角形全等[角边角]

AAS两个角和其中一个角的对边开业相等的两个三角形全等[边角边]

HL斜边和一条直角边对应相等的两个三角形全等[斜边,直角边]

4、角平分线的性质:角的平分线上的点到角的两边的距离相等、

5、角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上、

不等关系

1、 一般地,用符号“<”(或“≤”),>”(或“≥”)连接的式子叫做不等式、

2、 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。

3、 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语、

非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0

非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0

不等式的基本性质

1、 掌握不等式的基本性质,并会灵活运用:

(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:

如果a>b,那么a+c>b+c, a-c>b-c、

(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即

如果a>b,并且c>0,那么ac>bc,

(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac

2、 比较大小:(a、b分别表示两个实数或整式) 一般地:

如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;

如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;

如果a那么a-b是负数;反过来,如果a-b是正数,那么a

即:a>b <===> a-b>0 a=b <===> a-b=0 a<===> a-b<0

推荐访问:知识点 八年级 要点 八年级数学主要知识点 八年级数学知识点归纳总结 8年级数学知识点总结 八年级数学重要知识点总结 八年级数学重点知识点总结 八年级数学知识点梳理 八年级数学所有知识点总结 八年级的数学知识点总结 八年级数学知识点归纳 八年级数学重点知识点总结归纳

Top