广东高考数学立体几何解题技巧,菁选2篇【完整版】
广东高考数学立体几何解题技巧1 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题下面是小编为大家整理的广东高考数学立体几何解题技巧,菁选2篇【完整版】,供大家参考。
广东高考数学立体几何解题技巧1
立体几何篇
高考立体几何试题一般共有4道(选择、填空题3道, 解答题1道), 共计总分27分左右,考查的知识点在20个以内。 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提。 随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看, 以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
知识整合
1.有关*行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“*行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线*行(垂直)、线面*行(垂直)、面面*行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2. 判定两个*面*行的方法:
(1)根据定义--证明两*面没有公共点;
(2)判定定理--证明一个*面内的两条相交直线都*行于另一个*面;
(3)证明两*面同垂直于一条直线。
3.两个*面*行的主要性质:
(1)由定义知:“两*行*面没有公共点”。
(2)由定义推得:“两个*面*行,其中一个*面内的直线必*行于另一个*面。
(3)两个*面*行的性质定理:”如果两个*行*面同时和第三个*面相交,那
么它们的交线*行“。
(4)一条直线垂直于两个*行*面中的一个*面,它也垂直于另一个*面。
(5)夹在两个*行*面间的*行线段相等。
(6)经过*面外一点只有一个*面和已知*面*行。
以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。
解答题分步骤解决可多得分
1. 合理安排,保持清醒。数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。
2. 通览全卷,摸透题情。刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。
3 .解答题规范有序。一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考(微博)阅卷是“分段评分”。比如可将难题划分为一个个子问题或一系列的.步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。
广东高考数学立体几何解题技巧2
三角形斜边长度怎么算
不同的条件,算斜边的方法也不同.
譬如:一,已知直角三角形的两条直角边,求斜边.
方法是:利用勾股定理:斜边=根号(两条直角边的*方和).
二,已知直角三角形的一个锐角a及其对边,求斜边.
方法是:利用正弦函数:斜边=(角a的对边)/sina.
三,已知直角三角形的一个锐角a及其邻边,求斜边.
方法是:利用余弦函数:斜边=(角a的邻边)/cosa.
四.已知直角三角形的面积及斜边上的高,求斜边.
方法是:利用三角形的面积公式:斜边=(2倍三角形的面积)/斜边上的高.
三角形斜边长度计算公式是什么
解三角形:解直角三角形,斜三角形特殊情况
勾股定理:只适用于直角三角形,外国叫“毕达哥拉斯定理”。a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。勾股弦数是指一组能使勾股定理关系成立的三个正整数。比如3、4、5。他们分别是3、4和5的倍数。常见的勾股弦数有3、4、5;6、8、10;5、12、13;10、24、26;等等.
解斜三角形:在三角形ABC中,角A,B,C的对边分别为a,b,c.
则有
1、正弦定理
a/sinA=b/sinB=c/sinC=2R(R为三角形外接圆半径)
2、余弦定理
a^2=b^2+c^2-2bc*cosA、b^2=a^2+c^2-2ac*cosB
c^2=a^2+b^2-2ab*cosC 注:勾股定理其实是余弦定理的一种特殊情况。
3、余弦定理变形公式
cosA=(b^2+C^2-a^2)/2bC cosB=(a^2+c^2-b^2)/2ac cosC=(a^2+b^2-C^2)/2ab
推荐访问:立体几何 解题 广东 广东高考数学立体几何解题技巧 菁选2篇 广东高考数学立体几何解题技巧1 广东高考数学立体几何解题技巧100题 广东高考数学立体几何解题技巧100 广东高考数学立体几何解题技巧10题
热门文章:
- 最新文明礼貌月活动策划,文明礼貌月活动方案(优秀1合集)(全文完整)2024-08-22
- 2023年医院护士面试自我介绍(优秀17篇)2024-08-22
- 2023年最新六年级自我介绍(汇总18篇)2024-08-22
- 学生会个人简历如何写(优秀9篇)2024-08-22
- 2023四年级学生自我介绍,四年级学生自我介绍(大全8篇)(全文完整)2024-08-22
- 房屋租赁合同书样本,房屋租赁合同书(优质11篇)【精选推荐】2024-08-22
- 设备租赁合同(通用12篇)2024-08-22
- 最新转让协议书才有法律效力(大全10篇)(全文完整)2024-08-22
- 2023海边捡垃圾社会实践报告,垃圾处理社会实践报告(优秀8篇)(范文推荐)2024-08-22
- 最新外科护士自我鉴定(实用18篇)2024-08-22