卓哥范文网 - 设为首页 - 加入收藏
当前位置 首页 > 专题范文 > 公文范文 >

2023年《三角函数》说课稿3篇

时间:2023-01-07 11:10:09 来源:网友投稿

《三角函数》说课稿1  各位领导,各位老师:  我说课的课题是《任意角的三角函数》,内容取自人教版普通高中课程标准实验教科书《数学》④(必修)第1。2。1节。  一、教材结构与内容简析  本节内容在下面是小编为大家整理的2023年《三角函数》说课稿3篇,供大家参考。

2023年《三角函数》说课稿3篇

《三角函数》说课稿1

  各位领导,各位老师:

  我说课的课题是《任意角的三角函数》,内容取自人教版普通高中课程标准实验教科书《数学》④(必修)第1。2。1节。

  一、教材结构与内容简析

  本节内容在全书及章节的地位:三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用。三角函数的定义是在初中对锐角三角函数的定义以及刚学过的“角的概念的推广”的基础上讨论和研究的。三角函数的定义是本章最基本的概念,对三角内容的整体学习至关重要,是其他所有知识的出发点。紧紧扣住三角函数定义这个宝贵的源泉,可以自然地导出本章的具体内容:三角函数线、定义域、符号判断、值域、同角三角函数关系、多组诱导公式、多组变换公式、图象和性质。 三角函数的定义在教材中起着承前启后的作用,一方面,通过这部分内容的学习,可以帮助学生更加深入理解函数这一基本概念,另一方面它又为*面向量、解析几何等内容的学习作必要的准备。三角函数知识还是物理学、高等数学、测量学、天文学的重要基础。

  三角函数定义必然是学好全章内容的关键,如果学生掌握不好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性决定了本节教材的重点就是定义本身。

  数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生展示尝试类比、数形结合等数学思想方法。

  二、教学重点、难点、关键

  教学重点:任意角的三角函数的定义,三角函数的符号规律。

  教学难点:任意角的三角函数概念的建构过程。

  教学关键:如何想到建立直角坐标系;六个比值的确定性( α确定,比值也随之确定)与依赖性(比值随着α的变化而变化)。

  三、学情分析

  学生已经掌握的内容及学生学习能力

  1。 学生在初中时已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。

  2。学生的运算能力较差。

  3。部分同学对数学的学习有相当的兴趣和积极性。

  4。在探究问题的能力,合作交流的意识等方面发展不够均衡,必须在老师一定的指导下才能进行。

  四、 教学目标

  根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征 ,我制定如下教学目标:

  1。基础知识目标:使学生正确理解任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义;

  2。能力训练目标:通过学生积极参与知识的“发现”与“形成”的过程,培养合情猜测的能力。

  3。情感目标:通过学习,渗透数形结合和类比的数学思想,培养学生良好的思维习惯。

  下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

  五、教学理念和方法

  教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、合作交流、师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。

  根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、讲练结合”的方法组织教学教法, 在课堂结构上,设计了 ①创设情境——揭示课题②推广认知——形成概念③巩固新知——探求规律④总结反思——提高认识⑤任务后延——自主探究五个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标。 接下来,我再具体谈一谈这堂课的教学过程:

  六、教学程序及设想

  总体来说, 由旧及新,由易及难,逐步加强,逐步推进,给定定义后通过应用定义又逐步发现新知识,拓展、完善定义。

  先由初中的直角三角形中锐角三角函数的定义,过度到直角坐标系中锐角三角函数的定义,再发展到直角坐标系中任意角三角函数的定义。

  (一)创设情境——揭示课题

  问题1:在初中我们学习了锐角三角函数,那么锐角三角函数是如何定义的?

  【设计意图】学生在初中学习了锐角的三角函数概念,现在学习任意角的三角函数,又是一种推广和拓展的过程(类似于从有理数到实数的扩展)。温故知新,要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始,对锐角三角函数的复习就必不可少。

  问题 2:角的概念推广之后,这样的三角函数定义还适用吗?

  问题 3:若将锐角放入直角坐标系中,你能用角的终边上的点的坐标来表示锐角三角函数吗?

  留时间让学生独立思考或自由讨论,教师参与讨论或巡回对学困生作启发引导。

  能表示吗?怎样表示?针对刚才的问题点名让学生回答。 用角的对边、邻边、斜边比值的说法显然是受到阻碍了,由于前面已经以直角坐标系为工具来研究任意角了,学生一般会想到(否则教师进行提示)继续用直角坐标系来研究任意角的三角函数。

  【设计意图】

  从学生现有知识水*和认知能力出发,创设问题情景,让学生产生认知冲突,进行必要的启发,将学生思维引上自主探索、合作交流的“再创造”征程。

  教师对学生回答情况进行点评后布置任务情景:请同学们用直角坐标系重新研究锐角三角函数定义!

  师生共做(学生口述,教师板书图形和比值)。

  问题 4:对于确定的角 ,这三个比值是否与P在 的终边上的位置有关?为什么?

  先让学生想象思考,作出主观判断,再引导学生观察右图,

  联系相似三角形知识,探索发现: 对于锐角α的每一个确定值,

  六个比值都是确定的,不会随P在终边上的移动而变化。

  得出结论(强调):当α为锐角时,六个比值随α的变化而变化;但对于锐角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化。 所以,六个比值分别是以角α为自变量、以比值为函数值的函数。

  (二)推广认知——形成概念

  将锐角的比值情形推广到任意角α后,水到渠成,师生共同进行探索和推广出:任意角的三角函数定义。同时教师强调:由于弧度制使角和实数建立了一一对应关系,所以三角函数是以实数为自变量的函数,对数学学习能力较好的同学起到了很好的指导作用。

  教师指出: sinα、csα、tanα的定义域必须紧扣三角函数定义在理解的基础上记熟,ctα、cscα、secα的定义域不要求记忆。

  (关于值域,到后面再学习)。

  【设计意图】定义域是函数三要素之一,研究函数必须明确定义域。 指导学生根据定义自主探索确定三角函数定义域,有利于在理解的基础上记住它、应用它,也增进对三角函数概念的掌握。

  (三)巩固新知——探求规律

  为了使学生达到对知识的深化理解,进而达到巩固提高的效果,

  例1。已知角 的终边过点 ,求 的六个三角函数值

  要求:读完题目,思考:计算什么?需要准备什么?闭目心算,对照板书,模仿书面表达格式。

  巩固定义之后,我特地设计了一组即时训练题,以巩固和加深对三角函数概念的理解,通过课堂积极主动的练习活动,培养学生分析解决问题的能力。

  例2。 求 的正弦、余弦和正切值。

  分析: 终边上有无穷多个点,根据三角函数的定义,只要知道 终边上任意一个点的坐标,就可以计算这个角的三角函数值(或判断其无意义)

  师生探索:紧扣三角函数定义求解,首先要在终边上取定一点。终边在哪儿呢?取定哪一点呢?任意点、还是特殊点?要灵活,只要能够算出三角函数值,都可以。

  取特殊点能使计算更简明。

  等待学生基本理解和掌握三角函数定义后,观察、分析初、高中所计算的函数值有何变化,让学生意识到三角函数值的正负与角所在象限有关, 然后引导学生紧紧抓住三角函数定义来分析,从而导出三角函数值的正负与角所在象限的关系,进而由教师总结符号记忆方法,便于学生记忆。

  【设计意图】判断三角函数值的正负符号,是本章教材的一项重要的知识、技能要求。 要引导学生抓住定义、数形结合判断和记忆三角函数值的正负符号,并总结出形象的“才”字符号法则,这也是理解和记忆的关键。

  (四)总结反思——提高认识

  由学生总结本节课所学习的主要内容:⑴任意角的三角函数的定义及其定义域;⑵三角函数的符号规律。让学生通过知识性内容的小结,把课堂教学传授的知识尽快化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

  (五)任务后延——自主探究

  学生经过以上四个环节的学习,已经初步掌握了任意角的三角函数的定义及三角函数的符号规律,有待进一步提高认知水*,因此我针对学生素质的差异设计了有层次的作业,其中思考题的设计思想是:综合练习巩固提高,更为下节的学习内容打下基础,同时留给学生课后自主探究,这样既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的,以有利于全体学生的发展。

  六、简述板书设计。

  ctα、cscα、secα的定义写在sinα、csα、tanα的左下方,突出本节重要内容的主体地位。

  结束:以上,我仅从说教材,说学情,说教法,说学法,说教学程序上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。

  希望各位领导 、同行对本堂说课提出宝贵意见。

《三角函数》说课稿2

  《锐角三角函数》(第一课时),所选用的教材为人教版义务教育课程标准实验教科书。根据新课标的理念,对于本节课,以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教学方法和学法分析,教学过程分析四个方面加以说明。

  一、教材的地位和作用

  1、教材分析

  本节教材是人教版初中数学新教材九年级下第28章第一节内容,是初中数学的重要内容之一。一方面,这是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础,也是高中进一步研究三角函数、反三角函数的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

  2、学情分析

  从学生的年龄特征和认知特征来看:

  九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。

  从学生已具备的知识和技能来看:

  九年级学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础。

  从心理特征来看:九年级学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。

  从学生有待于提高的知识和技能来看:

  学生要得出直角三角形中边与角之间的关系,需要观察、思考、交流,进一步体会数学知识之间的联系,感受数形结合的思想,体会锐角三角函数的意义,提高应用数学和合作交流的能力。学生可能会产生一定的困难,所以教学中应予以简单明了,深入浅出的剖析

  3、教学重点、难点

  根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我认为本节课的重点为:理解正弦函数意义,并会求锐角的正弦值。

  难点为:根据锐角的正弦值及一边,求直角三角形的其它边长。

  二、教学目标分析:

  新课标指出,教学目标应从知识技能、数学思考、问题解决、情感态度等四个方面阐述,而这四维目标又应是紧密联系的一个完整的整体,学生学知识技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识技能为主线,渗透情感态度,并把前面两者通过数学思考充分体现在问题解决中。借此结合以上教材分析,将四个目标进行整合,确定本节课的教学目标为:

  1. 理解锐角正弦的意义,并会求锐角的正弦值;

  2 掌握根据锐角的正弦值及直角三角形的一边,求直角三角形的其它边长的方法;

  3 经历锐角正弦的意义探索的过程,培养学生 观察分析、类比归纳的探究问题的能力;

  4 通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。

  三、教学方法和学法分析

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的学情情况,本节课我采用“三动五自主”的教学模式,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和合作交流的形式,在教师的指道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  本节课的教法采用的是情境引导和自学教学法,在教学过程中,通过适宜的问题情境引发新的认知冲突;建立知识间的联系。教师通过引导、指导、反馈、评价,不断激发学生对问题的好奇心,使其在积极的自主活动中主动参与概念的建构过程,并运用数学知识解决实际问题,享受数学学习带来的乐趣。

  本节课的学习方法采用自主探究法与合作交流法相结合。本节课数学活动贯穿始终,既有学生自主探究的,也有小组合作交流的,旨在让学生从自主探究中发展,从合作交流中提高。

  四、教学过程

  新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课主要安排以下教学环节:

  (一)自学提纲

  1、 已知:在Rt△ABC中,∠C=900,∠A=30°,BC=10m,求AB

  已知:在Rt△ABC中,∠C=900,∠A=30°,AB=20m,求BC

  设计意图:建构注意主张教学应从学生已有的知识体系出发,相似的三角形性质是本节课深入研究锐角正弦的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  2、 创设情境,提出问题

  利用多媒体播放意大利比萨斜塔图片,然后老师问:比萨斜塔中条件和要探究的问题:“你能根据问题背景画出直角三角形并且利用边求出斜塔的倾斜角吗?”这就是今天我们要学习锐角三角函数(板书课题)

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。

  通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

  (二)合作交流

  1、阅读课本P74问题与思考 (要求学生独立思考后小组内合作探究)

  结论:直角三角形中,30°角的对边与斜边的比值 。

  2、阅读课本P75思考,并求值

  结论:直角三角形中,45°角的对边与斜边的比值 。

  设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流 等活动,引导学生归纳。

  3、阅读课本P75探究 。

  问:锐角A度数一定时,不管直角三角形的大小如何,它的对边与斜边的比有什么关系?你能解释吗?

  4、正弦函数定义:在Rt△ABC中,∠C=900,把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA=BC/AB

  对定义的几点说明:

  1、sinA是一个完整的符号,表示∠A的正弦习惯上省略“∠”的符号.

  2、本章我们只研究锐角的正弦。

  通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生引入到下一环节。

  (三)自主展示(强化训练,巩固双基)

  1、(例1课本P76)已知:在Rt△ABC中,∠C=90°,根据图中数据

  求sinA和sinB

  2、课本77页练习

  3、判断对错(学生口答)

  (1)若锐角∠A=∠B,则sinA=sinB ( )

  (2)sin60°=30°+sin30° ( )

  4、将Rt△ABC各边扩大100倍,则sinA的值( )

  A.扩大100倍 B.缩小100倍 C.不变 D.不确定

  5、*面直角坐标系中点P(3,- 4),OP与x轴的夹角为∠1,求sin∠1的值。

  6、在Rt△ABC中,∠C=90°,BC=6,sinA=3/5,求:AB, AC的长。

  设计意图:例题及练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

  (四)自主评价(小结归纳,拓展深化)

  我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的知识、方法、体验是那个方面进行归纳,我设计了这么三个问题:

  ① 通过本节课的学习,你学会了哪些知识;

  ② 通过本节课的学习,你最大的体验是什么;

  ③ 通过本节课的学习,你掌握了哪些学习数学的方法?

  (五)自主拓展(提高升华)

  1、课本习题28.1第1、2、题。(只做与正弦函数有关的部分);

  2、选做题:已知:在Rt△ABC中,∠C=900,sinA=1/3,周长为60,求:斜边AB的长.

  以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的.一个延伸。总的设计意图是反馈教学,巩固提高。

  以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,为了使课堂效益达到最佳状态,我设计以下问题加以追问:

  1、sinA能为负吗?

  2、比较sin45°和sin30°的大小。

  设计要求:(1)先学生独立思考后小组内探究

  (2)各组交流展示探究结果,并且组内或各组之间自主评价.

  设计意图:

  (1)有一定难度需要学生进行合作探究,有利于培养学生善于反思的好习惯.

  (2)学生通过互评自评,可以使学生全面了解自己的学习过程,感受自己的成长和进步,同时促进学生对学习及时进行反思,为教师全面了解学生的学习状况,改进教学,实施因材施教提供重要依据。

  教学反思

  1.本教学设计以直角三角形为主线,力求体现生活化课堂的理念,让学生在经历“问题情境——形成概念——应用拓展——反思提高”的基本过程中,体验知识间的内在联系,让学生感受探究的乐趣,使学生在学中思,在思中学。

  2.在教学过程中,重视过程,深化理解,通过学生的主动探究来体现他们的主体地位,教师是通过对学生参与学习的启发、调整、激励来体现自己的引导作用,对学生的主体意识和合作交流的能力起着积极作用。

  3.正弦是生活中应用较广泛的三角函数。因而在本节课的设计中力求贴近生活。又从意大利比萨斜塔提炼出了数学问题,让学生体会学数学、用数学的乐趣。

《三角函数》说课稿3

  一、教材分析

  (一)内容说明

  函数是中学数学的重要内容,中学数学对函数的研究大致分成了三个阶段。

  三角函数是最具代表性的一种基本初等函数。4.8节是第二章《函数》学习的延伸,也是第四章《三角函数》的核心内容,是在前面已经学习过正、余弦函数的图象、三角函数的有关概念和公式基础上进行的,其知识和方法将为后续内容的学习打下基础,有承上启下的作用。

  本节课是数形结合思想方法的良好素材。数形结合是数学研究中的重要思想方法和解题方法。

  著名数学家华罗庚先生的诗句:......数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休......可以说精辟地道出了数形结合的重要性。

  本节通过对数形结合的进一步认识,可以改进学习方法,增强学习数学的自信心和兴趣。另外,三角函数的曲线性质也体现了数学的对称之美、和谐之美。

  因此,本节课在教材中的知识作用和思想地位是相当重要的。

  (二)课时安排

  4.8节教材安排为4课时,我计划用5课时

  (三)目标和重、难点

  1.教学目标

  教学目标的确定,考虑了以下几点:

  (1)高一学生有一定的抽象思维能力,而形象思维在学习中占有不可替代的地位,所以本节要紧紧抓住数形结合方法进行探索;

  (2)本班学生对数学科特别是函数内容的学习有畏难情绪,所以在内容上要降低深难度。

  (3)学会方法比获得知识更重要,本节课着眼于新知识的探索过程与方法,巩固应用主要放在后面的三节课进行。

  由此,我确定了以下三个层面的教学目标:

  (1)知识层面:结合正弦曲线、余弦曲线,师生共同探索发现正(余)弦函数的性质,让学生学会正确表述正、余函数的单调性和对称性,理解体会周期函数性质的研究过程和数形结合的研究方法;

  (2)能力层面:通过在教师引导下探索新知的过程,培养学生观察、分析、归纳的自学能力,为学生学习的可持续发展打下基础;

  (3)情感层面:通过运用数形结合思想方法,让学生体会(数学)问题从抽象到形象的转化过程,体会数学之美,从而激发学习数学的信心和兴趣。

  2.重、难点

  由以上教学目标可知,本节重点是师生共同探索,正、余函数的性质,在探索中体会数形结合思想方法。

  难点是:函数周期定义、正弦函数的单调区间和对称性的理解。

  为什么这样确定呢?

  因为周期概念是学生第一次接触,理解上易错;单调区间从图上容易看出,但用一个区间形式表示出来,学生感到困难。

  如何克服难点呢?

  其一,抓住周期函数定义中的关键字眼,举反例说明;

  其二,利用函数的周期性规律,抓住“横向距离”和“k∈Z"的含义,充分结合图象来理解单调性和对称性

  二、教法分析

  (一)教法说明教法的确定基于如下考虑:

  (1)心理学的研究表明:只有内化的东西才能充分外显,只有学生自己获取的知识,他才能灵活应用,所以要注重学生的自主探索。

  (2)本节目的是让学生学会如何探索、理解正、余弦函数的性质。教师始终要注意的是引导学生探索,而不是自己探索、学生观看,所以教师要引导,而且只能引导不能代办,否则不但没有教给学习方法,而且会让学生产生依赖和倦怠。

  (3)本节内容属于本源性知识,一般采用观察、实验、归纳、总结为主的方法,以培养学生自学能力。

  所以,根据以人为本,以学定教的原则,我采取以问题为解决为中心、启发为主的教学方法,形成教师点拨引导、学生积极参与、师生共同探讨的课堂结构形式,营造一种民主和谐的课堂氛围。

  (二)教学手段说明:

  为完成本节课的教学目标,突出重点、克服难点,我采取了以下三个教学手段:

  (1)精心设计课堂提问,整个课堂以问题为线索,带着问题探索新知,因为没有问题就没有发现。

  (2)为便于课堂操作和知识条理化,事先制作正弦函数、余弦函数性质表,让学生当堂完成表格的填写;

  (3)为节省课堂时间,制作幻灯片演示正、余弦函数图象和性质,也可以使教学更生动形象和连贯。

  三、学法和能力培养

  我发现,许多学生的学习方法是:直接记住函数性质,在解题中套用结论,对结论的来源不理解,知其然不知其所以然,应用中不能变通和迁移。

  本节的学习方法对后续内容的学习具有指导意义。为了培养学法,充分关注学生的可持续发展,教师要转换角色,站在初学者的位置上,和学生共同探索新知,共同体验数形结合的研究方法,体验周期函数的研究思路;帮助学生实现知识的意义建构,帮助学生发现和总结学习方法,使教师成为学生学习的高级合作伙伴。

  教师要做到:

  授之以渔,与之合作而渔,使学生享受渔之乐趣。因此

  1.本节要教给学生看图象、找规律、思考提问、交流协作、探索归纳的学习方法。

  2.通过本课的探索过程,培养学生观察、分析、交流、合作、类比、归纳的学习能力及数形结合(看图说话)的意识和能力。

  四、教学程序

  指导思想是:两条线索、三大特点、四个环节

  (一)导入

  引出数形结合思想方法,强调其含义和重要性,告诉学生,本节课将利用数形结合方法来研究,会使学习变得轻松有趣。

  采用这样的引入方法,目的是打消学生对函数学习的畏难情绪,引起学生注意,也激起学生好奇和兴趣。

  (二)新知探索主要环节,分为两个部分

  教学过程如下:

  第一部分————师生共同研究得出正弦函数的性质

  1.定义域、值域2.周期性

  3.单调性(重难点内容)

  为了突出重点、克服难点,采用以下手段和方法:

  (1)利用多媒体动态演示函数性质,充分体现数形结合的重要作用;

  (2)以层层深入,环环相扣的课堂提问,启发学生思维,反馈课堂信息,使问题成为探索新知的线索和动力,随着问题的解决,学生的积极性将被调动起来。

  (3)单调区间的探索过程是:

  先在靠近原点的一个单调周期内找出正弦函数的一个增区间,由此表示出所有的增区间,体现从特殊到一般的知识认识过程。

  xx教师结合图象帮助学生理解并强调“距离”(“长度”)是周期的多少倍

  为什么要这样强调呢?

  因为这是对知识的一种意义建构,有助于以后理解记忆正弦型函数的相关性质。

  4.对称性

  设计意图:

  (1)因为奇偶性是特殊的对称性,掌握了对称性,容易得出奇偶性,所以着重讲清对称性。体现了从一般到特殊的知识再现过程。

  (2)从正弦函数的对称性看到了数学的对称之美、和谐之美,体现了数学的审美功能。

  5.最值点和零值点

  有了对称性的理解,容易得出此性质。

  第二部分————学习任务转移给学生

  设计意图:

  (1)通过把学习任务转移给学生,激发学生的主体意识和成就动机,利于学生作自我评价;

  (2)通过学生自主探索,给予学生解决问题的自*,促进生生交流,利于教师作反馈评价;

  (3)通过课堂教学结构的改革,提高课堂教学效率,最终使学生成为独立的学习者,这也符合建构主义的教学原则。

  (三)巩固练习

  补充和选作题体现了课堂要求的差异性。

  (四)结课

  五、板书说明既要体现原则性又要考虑灵活性

  1.板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;同时不完全按课本上的呈现方式来编排板书。即体现系统性、程序性、概括性、指导性、启发性、创造性的原则;(原则性)

  2.使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。(灵活性)

  六、效果及评价说明

  (一)知识诊断

  (二)评价说明

  1.针对本班学生情况对课本进行了适当改编、细化,有利于难点克服和学生主体性的调动。

  2.根据课堂上师生的双边活动,作出适时调整、补充(反馈评价);根据学生课后作业、提问等情况,反复修改并指导下节课的设计(反复评价)。

  3.本节课充分体现了面向全体学生、以问题解决为中心、注重知识的建构过程与方法、重视学生思想与情感的设计理念,积极地探索和实践我校的科研课题——努力推进课堂教学结构改革。

  通过这样的探索过程,相信学生能从中有所体会,对后续内容的学习和学生的可持续发展会有一定的帮助。希望很久以后留在学生记忆中的不是知识本身,而是方法与思想,是学习的习惯和热情,这正是我们教育工作者追求的结果。

推荐访问:函数 说课稿 《三角函数》说课稿3篇 《三角函数》说课稿1 《三角函数》说课稿1年级

Top