卓哥范文网 - 设为首页 - 加入收藏
当前位置 首页 > 专题范文 > 公文范文 >

2023数学数列的知识点优秀3篇【优秀范文】

时间:2023-08-05 09:50:08 来源:网友投稿

数学数列的知识点优秀一、高中数列基本公式:1、一般数列的通项an与前n项和Sn的关系:an=2、等差数列的通项公式:an=a1+(n-1)dan=ak+(n下面是小编为大家整理的数学数列的知识点优秀3篇,供大家参考。

数学数列的知识点优秀3篇

数学数列的知识点优秀篇1

一、高中数列基本公式:

1、一般数列的通项an与前n项和Sn的关系:an=

2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

3、等差数列的前n项和公式:Sn=

Sn=

Sn=

当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

4、等比数列的通项公式: an= a1 qn-1 an= ak qn-k

(其中a1为首项、ak为已知的第k项,an≠0)

5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

当q≠1时,Sn=

Sn=

三、高中数学中有关等差、等比数列的结论

1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。

2、等差数列{an}中,若m+n=p+q,则

3、等比数列{an}中,若m+n=p+q,则

4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。

5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。

6、两个等比数列{an}与{bn}的积、商、倒数组成的数列

{an

bn}、

仍为等比数列。

7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

10、三个数成等比数列的设法:a/q,a,aq;

四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)

11、{an}为等差数列,则

(c>0)是等比数列。

12、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c

1) 是等差数列。

13、 在等差数列

中:

(1)若项数为

,则

(2)若数为

则,

14、 在等比数列

中:

(1) 若项数为

,则

(2)若数为

则,

数学数列的知识点优秀篇2

无穷递减等比数列

a,aq,aq^2……aq^n

其中,n趋近于正无穷,q<1

注意:

(1)我们把|q|<1无穷等比数列称为无穷递缩等比数列,它的前n项和的极限才存在,当|q|≥1无穷等比数列它的前n项和的极限是不存在的。

(2)S是表示无穷等比数列的所有项的和,这种无限个项的和与有限个项的和从意义上来说是不一样的,S是前n项和Sn当n→∞的极限,即S=

S=a/(1-q)

等比数列求和公式算法

想了解无穷递减等比数列求和的算法,需要先介绍一下等比数列求和公式

设一个等比数列的首项是a1,公比是q,数列前n项和是Sn,当公比不为1时

Sn=a1+a1q+a1q^2+。.。+a1q^(n-1)

将这个式子两边同时乘以公比q,得

qSn=a1q+a1q^2+。.。+a1q^(n-1)+a1q^n

两式相减,得

(1-q)Sn=a1-a1q^n

所以,当公比不为1时,等比数列的求和公式为Sn=[a1(1-q^n)]/(1-q)

对于一个无穷递减数列,数列的公比小于1,当上式得n趋向于正无穷大时,分子括号中的值趋近于1,取极限即得无穷递减数列求和公式

S=a/(1-q)

数学数列的知识点优秀篇3

等差数列

1、等差数列通项公式

an=a1+(n-1)d

n=1时a1=S1

n≥2时an=Sn-Sn-1

an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b

2、等差中项

由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。

有关系:A=(a+b)÷2

3、前n项和

倒序相加法推导前n项和公式:

Sn=a1+a2+a3+·····+an

=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①

Sn=an+an-1+an-2+······+a1

=an+(an-d)+(an-2d)+······+[an-(n-1)d]②

由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)

∴Sn=n(a1+an)÷2

等差数列的前n项和等于首末两项的和与项数乘积的一半:

Sn=n(a1+an)÷2=na1+n(n-1)d÷2

Sn=dn2÷2+n(a1-d÷2)

亦可得

a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

an=2sn÷n-a1

有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

4、等差数列性质

一、任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式。

二、从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N--

三、若m,n,p,q∈N--,且m+n=p+q,则有am+an=ap+aq

四、对任意的k∈N--,有

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。

推荐访问:数列 知识点 优秀 数学数列知识点整理 数列的知识点总结 数列知识点梳理 数学数列知识总结 数列的知识点和公式 数列知识点归纳总结 数列知识点总结及题型归纳 数学数列知识点总结 数列的相关知识点 数列知识点讲解

Top